
RESEARCH CONlRlBUllONS

Simulation
Modeling and Efficient Distributed
Statistical
Computing

Richard E. Nance
Event-Driven Simulations

Editor

of Multiple-Loop Networks

BORIS D. LUBACHEVSKY

ABSTRACT: Simulating asynchronous multiple-loop
networks is commonly considered a difficult task for parallel
programming. Two examples of asynchronous multiple-loop
networks are presented in this article: a stylized queuing
system and an lsing model. In both cases, the network is an
n x n grid on a torus and includes at least an order of nz
feedback loops. A new distributed simulation algorithm is
demonstrated on these two examples. The algorithm
combines three elements: (1) the bounded lag restriction;
(2) minimum propagation delays; and (3) the so-called
opaque periods. We prove that if N processing elements
(PEs) execute the algorithm in parallel and the simulated
system exhibits sufficient density of events, then, on average,
processing one event would require O(log N) instructions of
one PE. Experiments on a shared memory MlMD bus
computer (Sequent’s Balance) and on a SIMD computer
(Connection Machine) show speed-ups greater than 16 on 25
PEs of a Balance and greater than 1900 on 214 PEs of a
Connection Machine.

1. INTRODUCTION
The queuing network paradigm has been widely used
in distributed event-driven simulations [3, 4, 6, 7, 9, 10,
11,17, 22, 231. The ease with which a system can be
described in the form of a queuing network does not
necessarily imply a comparable ease in simulating the
system in this form. Assuming that different queues are
hosted by different processing elements (PEs), when
two queues are not directly connected in the network,
it does not follow that the two PEs hosting these queues
are prohibited from direct communication with each
other. However, many queuing-network-style algo-

0,989 ACM 0001.0782/89/0100-0111 $1.50

rithms silently assume that if the algorithm is not cen-
tralized, its topology of communication must be in a
strict agreement with the topology of communication in
the simulated network.

The unnecessary restriction of topological isomorph-
ism can make the algorithm unduly sensitive to the
topology of the simulated network. These algorithms
usually efficiently simulate a straight line of queues
(Fig. la). However, unless roll-back is allowed [7, 111,
the deadlock problem emerges as soon as alternative
paths (Fig. 1 b) appear in the network. The means to
counter deadlock include: infinite buffers [lo, 221, addi-
tional messages [lo, 171, and a detection/resolution
method [4]. The problem of deadlock may become
harder to solve when the simulated network has feed-
back loops (Fig. lc). In this case even large buffers do
not prevent deadlock [22], and using either of the other
two approaches may result in low speed-up as shown
empirically [6, 231. It is commonly believed that each
additional loop on the network graph significantly
degrades simulation performance. Proposed topology-
insensitive algorithms are accompanied by other diffi-
culties such as the danger of cascading roll-backs
[7, 111, or a low degree of achievable parallelism [12].

From the literature one might get the impression that
a multiple-loop asynchronous network is intractable for
an efficient distributed simulation. This article attempts
to change the impression by presenting two examples
of efficient distributed simulation of such networks.
One example, the token transport network, is a stylized
asynchronous queuing system, while the other, an
asynchronous Ising system, belongs to computational
physics. These are case presentations of a new distrib-
uted event-driven algorithm.

Iaway 1989 Volume 32 Number I Communications of the ACM 111

Research Contributions

SOURCE _

(cl

FIGURE 1. Network Topologies

Described in an abstract form unrelated to queues or
other specific applications, the algorithm avoids unnec-
essary restricutions inherited from an application. The
stylized queuing example shows how an application
can be mapped into this abstract form. The main ele-
ments of the algorithm, which are easily identified in
this form, are: (1) the bounded lug, which means that the
difference in the simulated time between events being
processed concurrently is bounded from above by a
known finite constant; (2) minimum propagation delays
between the parts of the simulated system; and (3) the
so-called opaque periods, which are the delays caused by
the non-preemptive states these parts can enter, as ex-
plained in Section 3.

In general, the algorithm has a synchronous structure
proceeding in iterations, while the simulated system
may be asynchronous. In specific cases, like the Ising
simulation, the synchrony can be relaxed. Since there
is no deadlock or blocking in the algorithm, there is no
need for deadlock detection/resolution or avoidance.
Each iteration is guaranteed to terminate with some
events having been processed at it.

The combined use of the previously mentioned three
elements in one algorithm is new, as is the way these
elements are combined; however, the use of any one
element has been reported in the literature. Specifi-
cally, in those queuing system models that assume infi-
nite buffers and zero transmission durations, both the
idea of a minimum-propagation delay and the idea of
an opaque-period stem from the phenomenon of a non-
zero service duration. In such contexts, these two ele-

ments have been recognized since the early algorithms
[3, 10, 221. However, in the complex environment of a
specific example, the difference between opaque pe-
riods and propagation delays can be masked. This dif-
ference does not seem to be clearly stated in literature.
Demonstrating the difference is one purpose of present-
ing the Ising simulation example, where the precom-
puted minimum propagation delays degenerate to zero,
but substantial opaque periods still exist.

Recently, the idea of the bounded lag was indepen-
dently introduced as a moving time window [24]. Its
implementation [24] is different from that proposed
here. Except for the case where the window size is so
small that it cannot contain two causally connected
events processed by different PEs, the algorithm [24]
guarantees no correctness in the usual sense or even
reproducibility of the simulation. In contrast, correct-
ness and reproducibility in our algorithm are preserved
for any nonnegative lag value.

Many authors appreciate the difficulty of a theoreti-
cal performance evaluation for an asynchronous dis-
tributed discrete event simulation and limit themselves
to empirical evaluation. For example, surve:y [17] pro-
poses “. . the empirical investigation of various heuris-
tics on a wide variety of problems” In contrast, this
article presents an efficiency proof for the proposed algo-
rithm. We show that on an appropriate physically real-
izable massively parallel processor, the algo:rithm is at
least an order of l/log N scalable. This means that if
the sizes of both the simulated system and the simula-
tor increase proportionally, keeping local properties
intact, then the order of the ratio of progress rates
of processing time over simulated time increases as
O(log(size)). Specifically, in our queuing network exam-
ple, if N PEs execute the algorithm in paraBel, so that
each queue is hosted by its own PE, and the simulated
system exhibits sufficient density of events so that at
each iteration there are, on average, an order of N non-
empty queues with pending events within the bounded
lag horizon, then the average of O(log N) instructions of
one PE will suffice for processing one event. Of this
cost, only O(1) instructions per event takes proper
event processing. The algorithm synchronization ac-
counts for the rest of the cost. Best serial list manipula-
tion techniques, that do not use constructs 1-3 above,
require the average of an order log N instructions for
processing one event. Since the cost per event in the
parallel algorithm is asymptotically not less than in the
serial algorithm, but N times more processors execute
the parallel algorithm, the speed-up is provably not less
than of an order of N, i.e., linear speed-up.

The proposed simulation algorithm is inte:nded for
parallel execution, however, it can also be run serially.
A number of such serial experiments were performed
for the queuing system example. Their results clearly
demonstrate the potential for a high parallel speed-up.
A repetition of these experiments for a parallel com-
puter is currently in progress. Their preliminary results
confirm the prediction of a high speed-up.

For the Ising model, simulation experimems were

112 Communications of the ACM Ianuay 1989 Volume 32 Number 1

also performed on the available parallel hardware
which was a Connection Machine” and a Balance”
computer. The efficiencies and speed-ups in these runs
met predictions and were substantial. For example, the
observed speed-up on 25 PEs of the Balance computer
was greater than 16 while on 214 PEs of the Connection
Machine the speed-up was greater than 1900.

The paper is organized as follows: First, the two
multiple-loop network examples are presented together
with their mapping into an abstract world view re-
quired by the algorithm. Three algorithm elements are
defined and identified in the examples. The algorithms
are then described, and the results of computer experi-
ments and a performance evaluation, including an out-
line of the performance proof follow. We conclude by
listing other feasible applications of the algorithm, its
known shortcomings, and directions for further re-
search.

2. EXAMPLES

A Token Transport Network
The simulated system is an n x n toroidal network.
(A 4 x 4 example is depicted in Figure 2.) A node of the

FIGURE 2. A 4 x 4 Toroidal Network

network is a server with an attached input queue
buffer of infinite capacity. An idling server is constantly
trying to change its status to serving by removing a
token from the input buffer and starting service. The
service durations are bounded from below by u sec-
onds, (r > 0. When the service is completed, the token
is either deleted from the system or dropped into the
input queue of one of the four neighboring servers.
After a token is served, the server assumes an idling

status if no more tokens remain in its input queue or, if
at least one token is left in the input queue, the server
removes one token from the queue and resumes a serv-
ing status. A server which always deletes a token can
be viewed as a “sink.” A server whose input buffer is
full to capacity (+m) can be viewed as a “source.”

In a distributed simulation algorithm, a server can be
represented by a separate PE. PEi, which hosts simula-
tion on behalf of server i, maintains the pool of pending
local events Iii. Each event e E Iii is a pair e = (contents,
time). PEi processes its events one at a time, during
which it modifies its own pool II,, and/or the pools II,
of its neighbors (in the simulated network). A detailed
description of this scheme follows.

The state of server i is a pair (sip 9,), where si indicates
the server status, that is, si = idling or si = serving, and
q1 2 0 is the integer number of tokens contained by the
input buffer. There are three types of events: (1) begin
service; (2) end service; and (3) drop a token into the
input queue. The contents of an event consist of the
event type and the node number where the event oc-
curs. For example, (3, i, t) is an event with contents
(3, i) and time t. This event means “drop a token into
the input queue of server i at time t” and it belongs to
PO01 Iii.

Five rules for local event processing are presented in
Figure 3. Each rule tells what PEi must do to process a
particular event e, provided that: (1) this event e is
chosen for processing; and (2) a specified condition
holds. For example, rule 5 describes the processing of
event (3, i, t), ifs, = serving.

Simulation begins with some pools Iii being non-
empty. Each non-empty pool must contain exactly one
event (1, i, 0) and the buffer must be non-empty: 9i > 0.
The corresponding server begins service as soon as the

I%& I. PPBcess event.(l , i,. f), if 91 > 0, as follows:

-’ Ruls Z.~.PKK%SS event (S, i, t), if 9;) 0,. as fdlOWS: *C.’
Insert event (3, r’, f)

Rile 3. Process evfbtj2, i, t), if 9{ = 0, as follows:
: ,Ph$sl(-le state si :== idling

Flu/d 4-r pmccss event (3, i, t), if qi = Q and si = idling, as
fOllO$& /

.A.*. Chaage state s, := serving and 9, :F qi + 1
4.2. Insert event (1, i, t)

Rule 5. P&cess event (3, i, r),~# si = sk7Hrzg, as follows:
Change state 9i := 9) + 1

BI Connection Machine is a registered trademark of Thinking Machines Cor-
poration.
oBalance is a trademark of Sequent Computer Systems. Inc. FIGURE 3. Rules for Processing Events

January 1989 Volume 32 Number I Communications of the ACM 113

Research Contributions

simu!lation starts at t = 0. Each empty pool Iii must, at
the start, have an empty buffer: qi = 0.

Thle following two situations are not covered in Fig-
ure 3: (1) processing (1, i, t), if qi = 0; and (2) processing
(3, i, t), if si = idling and qi > 0. Starting from the initial
condi.tion, one can formally prove that neither (1) nor
(2) can occur during simulation. This conforms with
intuition; a service start cannot be processed if there is
nothing to serve, and a server cannot be idling while
there are tokens in its buffer.

Instruction 1.1 in Figure 3 commands the PE to deter-
mine fsemice , decide whether or not the token is deleted,
and determine the output j which receives the token if
the token is not deleted. These determinations can be
arbitrary, within the given restrictions; i.e., tsemice 2 u
and j must be a neighbor of i. For concreteness, in the
computer experiments reported in Section 5, these de-
terminations are as follows:

1. Service durations tsemice are independent realiza-
tions of a random variable, tsemice = u + 5; where cr is a
constant, variable { is distributed exponentially, and
E[{] == fi - c, so that E[tseruice] = w.

2. The token is deleted after the service with prob-
ability p; this deletion is independent of any other
decision.

3. The choice of which output j should receive the
token is made randomly and uniformly among the four
neighbors of i; this decision is independent of any
other.

In the preceding statements, (r, CL, and p are fixed
parameters, 0 < u 5 p, 0 5 p 5 1.

The rules in Figure 3 do not tell how events are
chosen for processing. This choice should be deter-
mined by a general strategy of simulation. A conven-
tional strategy maintains a single event-list, where the
event,s are ordered according to their times. An event
or events with minimum times are chosen for process-
ing, and before this processing is completed, no other
event can be processed. This strategy should be quali-
fied a.5 serial, even if the simulated system is distrib-
uted over the different PEs of a parallel processor. The
potential for a speed-up while using this strategy is
limited because a single-event-list processing bottle-
necks a sufficiently large system.’ This article describes
a different, truly distributed strategy of simulation.

Asynchronous Ising Model
In the model of an Ising spin system, the same n x n
torus network that was used in the queuing system
example hosts a physical atom at each node. The atom,
located at node i, has a magnetic spin s(i): s(i) = +l or
s(i) = -1. In the asynchronous version of the Ising
model. [8], the spins attempt to change at asynchronous,
discrete times. Attempted spin change arrivals for a
particular atom are random and form a Poisson process.

’ Possibilities to parallelize this strategy are explored in [IZ], which concludes
that at most speed-up of an order of log N can be achieved. but only when
processing one event generates many new pending events.

Arrivals for different atoms are independent, the arrival
rate is the same, say X, for each atom.

When an attempt arrives, the new spin is deter-
mined, using the spin values of the given atom and the
neighboring atoms just before the update time. A ran-
dom experiment o may be also involved in the deter-
mination:

St(i) := new-state(s,-o(neighbors(i)), w). (2.11

In (2.1), s(neighbors(i)) denotes the indexed set of
states of all the neighbors of i including i itstelf. Sub-
script t - 0 expresses the idea of “just before t.” Accord-
ing to (2.1), the value of s(i) instantaneously changes at
time t from s,-o(i) to St(i). At time t, the value of s(i) is
already new. Concrete functions new...state() in (2.1)
are given in the literature on the Ising model (e.g., [I];
see also [14]), and are not important for the purposes of
this article.

In this example, there is only one event type, “an
attempted spin change,” and only one processing rule,
formula (2.1).

A well-known standard algorithm to simulate this
system was invented by Metropolis et al. [18]. In the
standard algorithm, the evolution of the spin configura-
tion is a sequence of one-spin updates: Given a configu-
ration, define the next configuration by cho’osing a
node i uniformly at random and attempting to change
the spin s(i) according to formula (2.1).

The standard algorithm can be considered as a var-
iant of the conventional single event-list technique, al-
though no event-list is explicitly maintained. Here, N
separate event streams are replaced by a single cumula-
tive event stream and by a procedure which1 randomly
delegates a node to meet each arrival. Thus, the time
increment between consecutive spin change attempts is
an independent realization of an exponentially distrib-
uted random variable with mean l/(W), w:here N = n2
is the total number of atoms in the network.. This sim-
plification becomes possible because a sum of inde-
pendent Poisson streams is a Poisson stream. If the ar-
rival streams for different atoms do not enjoy this
additivity property, an explicit event-list, one for all
atoms, could be the best strategy [13]. With or without
the event-list, the strategy is serial. This article presents
efficient distributed strategies for simulating this model.

3. ELEMENTS OF THE ALGORITHM

Bounded lag
Let T(e) denote the time of event e. The bounded lug
restriction with parameter B is:

If events e, and e2 are processed concurrently then
1 T(el) - T(eZ) 1 5 B, where 0 I B < +w is a known
constant.

To maintain the bounded lag restriction, the
(simulation) floor equal

min T(e) i=1,2 ,... N.EII,

114 Commtkcations of the ACM January 1989 Volume 32 Number 1

Research Contributions

is computed. An event e is admitted for processing only
if T(e) 5 floor + B.

The Minimum Propagation Delay
Let a graph G be associated with the simulated system.
The nodes of G, numbered 1, . . . , N, identify the N
parts of the system. G has a directed link i ---, j, if (1)
processing of an event e, e E II,, can change pool II, or
(2) the state of node i can directly influence the history
at node j. Pool IIj in (1) can be changed in several ways:
new events can be scheduled at node j, or events al-
ready scheduled at node j can be canceled, or both.

For the preceding examples, G coincides with the
graph of the n x n toroidal network and N = n2, An
example of item (1) in the definition above is instruc-
tion 1.4 in Figure 3: event (3, j, t + fgpyyicp) is inserted
into II, while processing event (1, i, t) E II,. Rule (2.1)
for processing spin change attempts is an example of
item (2). Note that if the state of a node is augmented
with states of its neighbors, then (2) can be reduced to
(1). This transformation would result in a more tedious
though equivalent model for the Ising simulation.

Before the simulation starts, the minimum propagation
delay d(i, j) 2 0 is assigned to each ordered pair (i, j) of
nodes of G. The assignment is carried out in the follow-
ing steps: (1) d(i, i) = 0 for all i; (2) if i -+ j is a link in G,
then an analysis of event processing rules yields the
largest estimate d(i, j) such that an event or a state
change which occurs at time t at node i can affect
the history at node j no earlier than at time t + d(i, j);
(3) if there exists a unique directed path from i to j,
then d(i, j) is the sum of the delays along this path; if
there are several such paths, d(i, j) is the minimum
sum over all such paths; (4) if there is no directed
path from i to j, then d(i, j) 2 +m.

With this definition the triangle inequality,
d(i, j) + d(j, k) 2 d(i, k), is guaranteed for any three
nodes i, j, and k.

Consider the example of a queuing system. Since
fscrv;(? 2 u by rule 1 in Figure 3, minimum delay d(i, j)
equals (r for any two neighbors i and j. For the pairs
i and j which are not neighbors, d(i, j) is set equal to
c times the number of links on a shortest path from
i to j. For example, d(l1, 44) = 2u in Figure 2 since
(11) + (14) ---, (44) is a shortest path from (11) to (44).
Note that d(i, j) = d(j, i). Although this symmetry is
convenient, it is not required in the general case.

In this example, definitions 1-4 are equivalent to the
following abstract definition: d(i, j) is the largest lower
bound on the delay for the history of states at node j to
become affected by a change at node i, that can be found
before the simulation starts without knowing the change OY

the states. Unfortunately, the latter definition is not
equivalent to the former in a general case. We believe
that a good mapping of a particular system into the
structure of the distributed simulation algorithm is al-
ways possible for which both definitions are equivalent.
An instance of bad mapping: a three-noded network
i + m --, j, where d(i, m) = d(i, j) = 1, but no change at i
can affect the history at j, because m consists of two

separate parts, m, and m2, where m, communicates
only with i and m2 communicates only with j. For
d(i, j) defined according to (3) as d(i, j) = d(i, m) +
d(m, j) = 2, the property of d(i, j) contained in the ab-
stract definition does not hold, since changes at i never
propagate to j. A better mapping splits m into two dis-
tinct nodes m, and m2. Then d(i, ml) = d(m2, j) = 1,
d(mI, m2) = d(i, j) = +m, and the two definitions coin-
cide.

Given a constant Y > 0 and a node i, the incoming
spherical region S J (i, Y), with its center at node i and
with radius Y, is the set of all the nodes j such that
d(j, i) 5 r. The outgoing spherical region S t (i, Y), with its
center at node i and with radius r, is the set of all the
nodes j such that d(i, j) I r.

A key innovation of the proposed algorithm is to
make the bounded lag restriction and the minimum
propagation delays work in tandem. This reduces the
computations needed for determining whether or not a
particular event can be processed. The idea can be ex-
plained using Figure 4, where a fragment of a large
toroidal queuing system network with N = n2 nodes is

0

0

0

0

0

0

0

0

j0

0

0

000000 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

FIGURE 4. Bounded Region of Testing

depicted. Since d(u, V) = d(v, u) for any nodes u and v,
one has S 4 (i, r) = S t (i, Y). This set will be denoted
S(i, r). Figure 4 is scaled so that the distance between
two neighbors along a horizontal or a vertical line is
equal to the minimum service time c.

Assume, for simplicity, that all event times are dis-
tinct and suppose one wishes to learn if it is possible to
process an event e at node i. The time of e must be
minimal among the events in II; in order to consider e
as a candidate for processing. Checking this condition is
sufficient in the serial simulation, where only one pool
is maintained. However, this test is not sufficient in the
distributed simulation. Indeed, an event e’ in another
local pool It, with smaller time T(e’) < T(e) may exist.
Processing e’, even indirectly, through a chain of inter-
mediate events and pools, may affect event e.

As pointed out in [x!], in principle, one should check
all other N - 1 pools to see if such a “dangerous” event
e’ exists. Such global screening is unacceptably expen-
sive, however, when N is large. Suppose the algorithm

Ianuary 1989 Volume 32 Number I Communications of the ACM 115

Research Contributions

runs with lag B. Then one knows, even without screen-
ing, that a node outside region S(i, B), say node j, can-
not contain “dangerous” events, because no information
from j can reach i early enough to affect e. Thus, the
screening area is reduced to the bounded number of
nodes: lying within S(i, B).

Now let i = (23). Suppose, like node j = (2:2), all four
neighbors j of i have “promised” not to transfer infor-
mation to i until next-t;. If

?ltXt-ti < min
jeneighbors(i)

?lf?Xt-tj,

izi

The testing procedure can be as follows: Let

Ti 2

i

min 7(e) if Iii # 0
ecn,

+w if Iii = 0

If Ly(i) denotes an estimate of the earliest time when
other nodes can affect the history at node i, then

then the spin change attempt at node i for time next-ti
can be safely processed using the current spin values of
the four neighbors. This exemplifies the use of opaque
periods.

m(i) = jGminB, (d(j, i) + min(T,, d(i, j) + Ti]). (3.1)
1,

pi

Formula (3.1) represents two ways of affecting the his-
tory at node i:

1. An event e, e E II,, j # i, with time T(e) = T, causes
a delivery of an event in Iii for time d(j, i) + Tj.

2. An event e, e E Iii, with time T(e) = Ti causes a
delivery of an event e’ in II,, j # i, for time d(i, j) + Ti.
Event e’, in turn, causes a delivery of an event in IL for
time ll(j, i) + d(i, j) + Ti. The net effect of these trans-
actions is that event e, currently existing in II;, is re-
flected back onto IL.

Opaque periods also exist in the queuing system ex-
ample and in such a context have been used in many
algorithms [3, 4, 6, 9, 10, 18, 20, 221, where the property
emphasized has been lookahead [3], i.e., the ability to
predict future states of a part of the simulateId system,
independently of the other parts. We emphasize an-
other side of the same phenomenon, the imbility to
communicate through the given part for the other parts.
Figure 5 shows events in the network with graph 1 + 2
+ 3. Node 2 begins service at the simulated time 7. and
remains serving until time r,, + tsemice. Service duration
tsemice is determined when the event “start service” is
processed for simulated time TV. The crossed-out circle
on axis & represents this event.

If link 2 + 3 could transfer information during the
service, then the best estimate for the earliest time

Opaq,ue Periods
In the Ising model example, for any two nodes i and j,
no matter how far apart, d(i, j) = 0. Indeed, for any
c > 0, no matter how small, there is a positive probabil-
ity th,at a spin change of atom i will affect a spin change
of atom j while the difference in time between the
changes is less than C.

Thus, the tandem approach seems not to work. How-
ever, an efficient distributed simulation of this example
is still. possible because of the opaque periods. An opaque
period is a “promise” of a node not to transfer informa-
tion along a certain outgoing link for a certain period of
simulated time.

In the Ising model, after an attempted spin change for
node j has been processed, say for simulated time tj, the
next attempt must be scheduled. Since the attempts
form ia Poisson process with rate X, the time of the next
attempt, say next-Q, is computed as

?ZeXt-tj = tj - t In r(u), (3.2)

where r(u) is an independent realization of a random
variable uniformly distributed in (0, l), and In is the
natural logarithm.

For the time duration (tj, next-t,), no information can
propagate via node j, since no change in the state of
node ,i is visible to the other nodes. For example, if j =
(22) in Figure 2, and node 21 changes its spin at time t,,
tz2 c I’* c next-ta2, then node 23 has no way to learn
about this change from node 22 before time next-t22.
But (23) might learn about the change from other
nodes, say from (24).

et

FIGURE 5. Effect of an Opaque Period on Event IPropagation

116 Commmications of the ACM January 1989 Volume 32 Number 1

Research Contributions

when event e can affect pool &, would be TV = 7(e) +
d(l, 3) = I + d(1, 2) + d(2, 3). However since link z
+ 3 is opaque, that is, unable to transfer information,
event e cannot affect pool II3 earlier than at time 72 =
max(T(e) + d(1, 2), 70 + fsemicel + d(2, 3).

In a typical case, opaque periods cannot be precom-
puted, unlike the minimum propagation delays. They
should instead be determined again at each stage of
simulation. Specifically, let ti be the current simulated
time at node i. Then the opaque period for an outgoing
link i + j has the form (ti, epij), where epij is the end of
the opaque period. Since in both considered examples,
Opij is independent of j, we call it op;.

In the Ising model example, opi is equal to the next
scheduled spin change attempt by atom i. Thus, for-
mula (3.2), where next-tj should be substituted with epj,
yields op,. The computation of epi is performed when a
spin change attempt is processed. In the queuing sys-
tem example, Opi is computed when event (1, i, t) is
processed. Namely, after tservice is determined by rule 1
in Figure 3, op, is computed as Opi = t + tservice.

Both versions of the algorithm in Figure 6, with and
without opaque periods, work for the queuing system
example. The version with opaque periods sometimes
works substantially faster than the one which uses only
tandem. In the Ising model simulation, only the version
with opaque periods works.

1. white @or < end,tima do {
2. compute estimate a(i) of the aarliest time, when the

history at node i can be affected by the other nodes;
5. ,syn&ronize;
4. while Ti 1 $bor + B and ‘G C n(i) do {
5. t# = : l-i;
8. prkess events e with l&ally minimum time 7(e) = Ti;

if required, then schedule new events for II, or other
II,, i jd: i, antllor delete some events from I& or other
n,,jjki; .

.7. delete ,the processed events from II, and compute
‘n&4 Tf

1;
8. synchrot&@:
9. floor := min Ti;

2 Zi”N
broadcast po&:to all node+;

to. synchronize;

FIGURE 6. A Parallel Event-Driven Simulation Algorithm

The concept of lookahead ratio (LAR) is introduced in
[6] as mean service time divided by minimal service
time. Assuming that service times are random variables
(which is not necessarily the case in our queuing sys-
tem example), LAR expresses the degree of opaqueness.
Experiments [6] confirm that efficiency increases with
greater LAR.

In other cases, however, LAR may not represent the
degree of opaqueness. Without changing distributions,
and hence without changing LAR, simply making the
queuing model more specific and exploring this spec-

ificity, substantially larger opaque periods can be
computed. For example, following [19], we can intro-
duce token identities, assume that service durations are
independent random variables, and assume FCFS disci-
pline for the queues. (These assumptions are not used
in the queuing example in Section 2.) Then the opaque
period for a node would include not only the current
service period, but also future service periods for all the
tokens currently awaiting service in the queue.

4. ALGORITHMS
An algorithm for a distributed event-driven simulation
is shown in Figure 6. The algorithm does not assume a
specific application; it assumes only that events of arbi-
trary nature occur at nodes of an arbitrary network.
The algorithm maintains N registers tl, . . . fN, of simu-
lated time and involves N PEs, one for each Iii. These
PEs execute the program in Figure 6 in parallel. For
any e E Iii, time I is guaranteed to be not smaller
than ti. At each iteration the algorithm tries to achieve
a progress in each local pool and to increase each ti.
During the simulation, ti does not decrease. The simula-
tion starts with floor = 0, Iii # 0 for at least one i,
min,,, r(e) 2 0, and ti = 0 for all i. Test Ti I floor + B at
step 4 in Figure 6 assures the bounded lag restriction.

PEio executes this code with index i = i, starting
from step 1. Some computations require cooperation
among the PEs. Among these are steps 3, 8, and 10 with
statements “synchronize,” and step 9 where mii&i&, Ti
is computed and then broadcast. When a PE hits a
“synchronize” statement it must wait until all the other
N - 1 PEs hit the same statement before it may con-
tinue. Instructions between these synchronization bar-
riers are not necessarily executed in lockstep. A coop-
eration between PEs might also be required at step 6, if
a PE operates in pools of other PEs and at step 2, as
explained below.

Observe that the algorithm is synchronous, whereas
the simulated system may be asynchronous. Synchroni-
zation in the algorithm prevents undesirable overlaps.
For example, computing m(i) at step 2 must not inter-
leave with steps 6 and 7 where some events are being
deleted and values Ti are being changed.

One method to compute a(i) at step 2 is using for-
mula (3.1). In this method, PEi communicates with the
PEs hosting nodes j E S 1 (i, B). In the queuing system
example, if the topology of the host matches that of the
target graph G, and if B > 20, then the communication
is required not only between the nearest neighbors, but
also between distant neighbors. Moreover, the larger
the B, the more non-neighbors are involved in commu-
nication.

If such a long range communication is undesirable,
an alternative method for implementing step 2 can be
used. Figure 7 shows two versions of this method. Both
versions compute the same a(i) and each so computed
a(i) is the same as the corresponding Ly(i) computed by
(3.1), providing that the latter does not exceed floor + B.
However, unlike algorithm (3.1), these algorithms re-

January 1989 Volume 32 Number 1 Communications of the ACM 117

Research Contributions

a. A simple stopping criterion b. An improved stopping criterion

FIGURE 7. An Alternative Method to Compute a(i)

quire only communication between neighboring PEs.
All PEZs execute the same version, either the one in
Figure 7a, or the one in Figure i’b. The convention for
interpreting codes in Figure 7 is the same as for the
code in Figure 6: PEio executes a code with index i =
iO. Auxiliary variables p(i), changed-a(i), and nezo-p(i)
are ernployed by the algorithms.

To understand these codes, it is useful to view them
as a preliminary, coarse simulation [9]. During this pre-
simulation, instead of events, estimates of earliest times
when events can emerge are propagating across the net-
work. To distinguish iterations 2.4-2.10 of the algo-
rithm in Figure 7 from iterations 2-10 of the algorithm
in Figure 6, the latter are called major iterations and the
former are called minor iterations. After k minor itera-
tions, p(i) represents an estimate for the earliest time
when existing events can affect node i after traversing
exactXy k links in the graph. Suppose Ti I floor + B.
Starting with the value p(i) = T, for k = 0, as k in-
creases, p(i) increases, being destined to exceed value
floor -k B. However, the increase needs not be mono-
tonic, sometimes p(i) may decrease. While /3(i) is so
changing, a(i) is keeping the record of smallest p(i)
achieved so far, excluding the initial value of p(i) at
k = 0. Thus the direction of change of a(i), unlike the
direction of change of p(i), can not be reversed.

NOIN consider the difference between the versions in
Figures 7a and 7b. The version in Figure 7a continues
the minor iterations until all p(i) exceed the value floor
+ B, which is represented by the first test in line 2.3. In
the queuing network example, this version terminates
after, at most, [B/al minor iterations. In a general case,
this estimate becomes the largest number m of nodes in a
directed path iI + . . . - i, whose total length d(i,, i2) +
. . . + d(i,-, , im) does not exceed B. In contrast, the ver-

sion in Figure 7 b attempts to decrease this number of
minor iterations by using a better stopping criterion at
step 2.3. This version capitalizes on the fact -that once
no decrease of a(i) is detected for all i (step 11.54, a(i)
can change no more.

It is easy to prove this fact. Indeed, if (~k-~ (i) = m(i),
i=l,... N, where subscript k denotes the m.inor itera-
tion number, then none of the /3k(i), i = 1, . . . N, is
smaller than its record low value before minor iteration
k. Therefore, none of new-&(i) computed at step 2.4 is
smaller than its record low value before minor iteration
k. By the virtue of step 2.5 of the algorithm, w(i) =
(~k+~(i). This completes the induction step.

Neither formula (3.1) nor the algorithms in Figure 7
uses opaque periods. While it is difficult to incorporate
opaque periods in the computations by (XI), the algo-
rithms in Figure 7 require only a minor modification;
thus, step 2.4 in both modified versions reads:

Yet another modification of the algorithm in Figure 6
deals with cases when there are fewer PEs than nodes
in the network by having each PE host a subnetwork.
A fragment of a large toroidal network is shown in
Figure 8, wherein each PE carries a 4 X 4 subnetwork.

The general algorithms presented above can be
greatly simplified for the Ising model simulation. Here
the bounded lag mechanism is not needed. Therefore,
steps 9 and 10 and test T; 5 floor + B at step 4 are
eliminated. Computing a(i) reduces to the simple
formula

118 Communications of the ACM]anuary 1989 Volume 32 Number 1

Research Contributions

PE2

(a)

FIGURE 8. Aggregation

03

Clearly, after processing a current attempted spin
change, the current Ti becomes the same as the current
OPi. There will be only one event e to process at step 6;
no insertion/deletion in another pool II, is performed.
Finally, with probability 1, no two spin change attempts
coincide in time. The latter observation allows one to
eliminate global “synchronize” statements and the en-
tire algorithm reduces to the remarkably simple form
presented in Figure 9, where r(W) and In are the same
as in (3.2).

The algorithm in Figure 9 is very asynchronous: dif-
ferent PEs can execute different steps concurrently and
can run at different speeds. A statement “wait-until
condition,” like the one at step 2 in Figure 9, does not
imply that the condition must be detected immediately
after it occurs. In particular, to detect condition

T, 5 min Tj,
jeneighbors(i)

jti

while executing step 2 of this algorithm, a PE can poll
the four neighboring PEs in an arbitrary order, one at a
time, with arbitrary delays and interruptions, and with-
out any respect to what these PEs are doing meanwhile.

The algorithm in Figure 9 is free from deadlock. De-
spite its asynchrony, it produces correct simulation his-
tories, that is, those which are statistically equivalent to
the histories produced by Metropolis et al. algorithm.
Moreover, a history is reproducible, that is, it remains
the same, independent of the conditions of run, timing
etc., provided that (1) the random number generator
always produces the same sequence of r’s for each
node, and (2) no two neighboring T, and T, are equal.

Assuming (2), “less than or equal to” at step 2 in
Figure 9 could be replaced with “less than.” However,
if, in violation of (2) condition

Ti = min Tj
jcneighbors(i)

jti

strikes, then the version with “less than” deadlocks.
(A violation of (2) may be caused by a round-off error).
The effect of the violation on the version with “less
than or equal to” is less severe: just a point of irrepro-
ducibility. One may use the synchronous algorithm, if
such irreproducibility is intolerable [la].

An aggregation is welcome in the algorithm in Fig-
ure 9, since a PE computes very little between commu-
nications with the other PEs. In Figure 8, the neighbors
of a node hosted by PEl are nodes hosted by PE2, PE3,
PE4, or PE5. PEl has direct connections with these four
PEs (Figure 8b). Given node i in the subnetwork of PEl,
one can determine with which neighboring PEs com-
munication is required in order to learn the states of

FIGURE 9. One-Spin-per-One-PE Version of an king Simulation

]anua y 1989 Volume 32 Number 1 Communications of the ACM 119

Research Contributions

the nlaighboring nodes. Let W(i) be the set of these PEs.
Examples in Figure 8 are: W(a) = 0, W(b) = (PE5],
W(c) := (PE3, PE4).

Figure 10 presents an aggregated variant of the
algorithm in Figure 9. PEI hosts the Ith subnetwork
and maintains the local time register T,, I = 1, 2, . . . ,
(n/m)‘. PEI,, simulates the evolution of its subnetwork
using the algorithm presented in Figure 10 with I = IO.
Local times TI maintained by different PEs might be
differant. However, within a subnetwork the simulation
is serial, like in the standard algorithm, and the local
time for all atoms in subnetwork I is the same, namely
T,. In (m - 2)’ cases out of m2, step 3 of the algorithm in

FIGURE 10. Many-Spins-per-One-PE Version of an king
Simulation

Figure 10 involves no busy wait, since W(i) = 0. The
atoms i such that W(i) = 0 constitute the dashed square
in Figure 8.

5. PE.RFORMANCE OF SIMULATION
First, consider the Ising simulation algorithm in Figure
9. The performance of this algorithm will be assessed
for the case when PEs execute at the same speed and
synchronously as if the execution were organized in
iterations. At step 2, PEi would start the iteration by
first polling each of its neighbors and then testing the T,
versus the minimum of the other four T,‘s. It would
then complete the iteration by executing steps 3 and 4,
if the test succeeded, or by waiting for the next itera-
tion, if the test failed. This is a possible but not obliga-
tory ti.ming arrangement for executing the algorithm in
Figure 9.

It is interesting to know what fraction of all N PEs
succeeds the test at step 2. Those succeeding PEs make
progress and perform useful work while the others are
idle. Clearly, the law of spin updates implemented
at step 3 in Figure 9 is irrelevant in answering this
question.

Using these rules, a serial algorithm for updating Ti’s
in iterations is exercised for different system sizes n
and three different dimensions: for an n-circle network,
for an n x n toroidal network (as in the model discussed
in section 21, and for an n x n x n network.

The results of these experiments are given in Fig-
ure 13-a, where the efficiency is calculated as the aver-
age fraction of those T;‘s being updated at an iteration.

Each solid line in Figure 11 a is enclosed between two
dashed lines. The latter represent 99.99 percent Student’s
confidence intervals constructed using several simula-
tion runs, which were parametrically equal but fed
with different random sequences.

No analytical theory is available for predicting the
fraction of non-idle PEs, or even for proving its separa-
tion from zero when n + +m. However it is clear from
Figure 11 a, that at least 12 percent of n2 = h’ PEs are
doing useful work. With such efficiency, the speed-up
is about 0.12 x N; for N = 214 the speed-up is more
than 1900.

These numbers were confirmed in an actual experi-
ment performed on 214 = 128 X 128 PEs of a Connec-
tion Machine (a quarter of the full computer was avail-
able). This SIMD computer, equipped with the language
*LISP, appeared well-suited for synchronous execution
of the one-spin-per-one-PE algorithm in Figure 9 on a
toroidal network. Note that the so-called multi-spin al-
gorithms [5] update faster, but simulate a different, syn-

(a)

04

FIGURE 11. Performance of the king Model Simulation: (a) One
spin per one PE; (b) many spins per one PE

120 Communications of the ACM January 1989 Volume 32 Number 1

Research Contributions

chronous Ising model which is trivial for parallelization.
In contrast, Metropolis et al. algorithm, which is simu-
lated in the experiments described here, was previously
believed inherently serial.

The 12 percent efficiency in the one-spin-per-one-PE
experiments could be greatly increased by aggregation.
The many-spins-per-one-PE algorithm in Figure 10 was
implemented as a parallel C-program for a Balance
computer, which is a shared memory MIMD bus ma-
chine. The n x n network was split into m x m subnet-
works as shown in Figure 8, where n is an integer
multiple of m. The computer has 30 PEs, therefore the
experiments could be performed only with (n/m)’ =
1, 4, 9, 16, and 25 PEs for different n and m.

Along with these experiments, a simplified serial
model, similar to the one of the one-spin-per-one-PE
case, was run. As in the previous case, this simplified
model simulates a possible but not obligatory timing
arrangement for executing the real algorithm, here the
algorithm in Figure 10. Figure 11 b shows excellent
agreement between performances of the two models for
the aggregated Ising simulations. The efficiency pre-
sented in Figure 11 b is computed by the formula

efficiency

serial execution time =
number of PEs x parallel execution time

The parallel speed-up can be found as efficiency x
number of PEs. Efficiency is 0.66 for 25 PEs simulating
a 120 x 120 Ising model; hence, the speed-up is greater
than 16. For the currently unavailable sizes, when lo4
PEs simulate a lo4 X lo* network, the simplified serial
model predicts efficiency at about 0.8 and speed-up at
about 8000.

We shall now outline the proof of the l/log N scala-
bility of the general algorithm in Figure 6. (A detailed
proof is given in [15].) It is possible to design the host
computer so that each “synchronize,” and each compu-
tation and broadcast of minimum or maximum, costs
O(log N). Under certain assumptions of network spar-
sity (e.g., assumption 2 in the Appendix), computation
of a(i) involves O(1) synchronizations and costs O(1)
instructions between synchronizations. This holds for
all three versions of the algorithm, whether using for-
mula (%I), or the method in Figure 7a or 7b. Under the
assumption that the number of pending events in each
Hi is bounded from above by a constant independent of
N and i, the cost of pool manipulations needed for pro-
cessing one event is O(1). If we further assume that,
independent of i and the major iteration, there are
only O(1) events to process in each II, at each major
iteration, we come to the overall cost of O(N log N)
instructions for one major iteration of the algorithm
in Figure 6.

To evaluate performance, we need an estimate of the
number of events processed during a major iteration. In
principle, the simulated system may exhibit low activ-
ity, as in the case of a single token traveling in a large
network. If this is not the case, and the system exhibits

a reasonably dense activity in space and time, then at
least an order of N events is processed at each major
iteration. The proof of the latter statement is outlined
in the Appendix, where, in particular, the “reasonably
dense activity” assumption is stated as a requirement
that the number of nodes which have pending events e,
satisfying T(e) 5 floor + B, be, on average, not less than
of an order N. Hence the average cost of processing one
event is O(log N), which also means at least an order of
l/log N scalability.

The argument formulated above for the case of N
PEs, applies to cases where there are fewer PEs than
nodes N, provided that the maximal number of nodes
per PE is O(1) when N ---, 00.

In a serial event-list algorithm, the length of the list
would be an order of N. Best list manipulation tech-
niques require on average an order of log N instructions
for performing insertions and deletions needed for one
event processing. Hence, a conventional serial algo-
rithm spends about the same number of instructions
processing one event, as one PE in a parallel processor.
Observe that such a conventional algorithm does not
use minimum propagation delays or opaque periods.
Since there are N PEs running, the speed-up would be
an order of N.

A necessary first step in writing a parallel program is
to write a serial program. Such a serial code, which
simulates an n x n queuing model, is now operational.
In the code, each parallel step of the algorithm in Fig-
ure 6 is represented as a serial loop, node number i
being the loop index. Minimization is done in a usual
way, so it costs an order of N instructions.

The steps which in the parallel algorithm cost an
order of log N to each PE, are either eliminated or cost
only an order of N in the serial algorithm. Therefore,
each major iteration should cost at most an order of N,
and the per-event cost should be O(1). The latter state-
ment is tested using the following procedure. The
model is exercised with various network sizes n, but
with other fixed parameters p, (r, p, B, and end-time.
Only those n which are integer multiples of 4 are taken.
The network contains (n/4)’ sources, located at nodes
(4u,4v),u,v =1,2 (n/4). As explained in section
2, the source buffers are full to capacity (+m). There is
no sink, but the positivity of p assures that the number
of tokens circulating in the network saturates after a
certain transient period. For all experiments the satura-
tion occurs before the first 10000 simulated seconds
elapse; the timing and other data are recorded during
the immediately following interval of length lOOOu, so
that end-time = ~CKHIU.

A series of execution times is obtained, and each
time is divided by n*, the number of nodes. The results
for the version of the algorithm where (Y are computed
as in Figure 7a, are presented in Figure 12. Because of
execution time variability, the same run is repeated
several times. As in the Ising model experiments, the
dashed curves in Figure 12 represent 99.99 percent
Student’s confidence intervals constructed from these
samples.

Ianuay 1989 Volume 32 Number 1 Communications of the ACM 121

Research Contributions

FlGlJRE 12. Performance of the Queuing System Simulation

Figure 12 shows very little increase of the per-node
CPU time, despite a substantial increase in the problem
size. Since the number of sources rises proportionally to
the problem size, it is reasonable to presume the num-
ber of events per node to be independent of system size
in these experiments. This agrees with the conjectured
per-event performance O(1). The results are similar for
the other two versions of the algorithm.

6. CONCLUSION: OTHER EXAMPLES,
SHOR.TCOMINGS, FURTHER RESEARCH
Only regular, highly symmetrical networks with simple
communication structures (i.e., having only one token
type, atoms with only two states, infinite buffers, etc.)
were chosen for presentation in this article. Irregularity
may lead to two problems: (1) a more complex map
from the simulated system into the abstract structure
of the algorithm (more event types, more complex
processing rules, and opaque period computations),
(2) load unbalance during simulation.

The first problem should be addressed by considering
a wide class of applications. An example of a token
transport network simulation with finite buffers and
nonzero transmission durations has been programmed
[15]. An interesting phenomenon in this example is
that minimum propagation delays and opaque periods
stem not only from nonzero service durations but also
from transmission durations. The latter contribute to
the propagation delays in the counter-traffic direction,
e.g., while a token travels from node i to node j, some
associated events propagate from j to i.

In an example of a timed logic simulation currently
under investigation there are readily defined propaga-
tion delays, but the determination of opaque periods
appears somewhat different from that of the queuing
systems and the Ising model. For example, an OR-gate
with signal 1 at one input is guaranteed to remain
opaque until this signal changes.

By choosing in this article the symmetrical networks,
we isolated the problem of efficient parallel coordina-
tion from the problem of load balancing. The issue of
load unbalance, which is of a major practical impor-
tance, is of a different nature and, we believe, should
be solved by different methods [Zl].

The speed of Ising simulations can be further in-
creased [14] by incorporating a serial algorithm [Z]. The
latter works faster than the standard algorithm [16] by
avoiding processing unsuccessful spin change attempts.
In the Ising model, algorithms [7, 111 would also capi-
talize on the unsuccessful spin change attempts by
guessing them correctly, when the neighbors’ spins are
not yet known. It would be interesting to co:mpare the
performance of the two approaches.

The basic paradigm of the Ising simulation can be
applied to a wider class of applications than one might
think. These include cellular arrays [13], timed Petri
nets, asynchronous neural networks, and communica-
tion networks. For example, in a telephone network,
calls arriving on a particular route, say a pair of nodes i
and j, form a Poisson process. To figure out the new
state of the route after the arrival, the states of the
incident routes must be known. This situation is ex-
pressed by equation (2.1), only instead of a graph one
should consider a hypergraph. A node of this hyper-
graph would be the set of original nodes constituting a
route. The algorithm performance would depend on the
number of neighbors, i.e., incident routes. For the one-
spin-per-one-PE Ising simulation, Figure 11 CI shows that
performance quickly degrades as the dimension in-
creases: a PE waits for more neighbors at step 2 of the
algorithm in Figure 9 as the local degree of the network
increases. This shortcoming can be compensated by
aggregation. The success in the aggregation (depends on
the graph sparsity. For example, if the diameter of the
graph is small, aggregation would not result in a sub-
stantial reduction of the wait.

To succeed in applying the tandem approach, global
topological properties such as diameter are also impor-
tant. Examples of particularly bad topologies for the
proposed algorithms of simulation are a star, where
N - 1 peripheral nodes are connected to a central node,
and a fully connected graph. It becomes clear from the
queuing system example in section 2, that propagation
delays do not necessarily mean the physical signal
propagation delays between nodes. The latter may be
negligibly small and assumed to be zero in a model. Yet
the minimum propagation delays may be substantial
‘Lecause of known positive lower bounds on the service
times.

Positive lower bounds on durations of various activi-
ties in practical systems can be found, perha.ps, more
often, than is discussed in theoretical papers. These
papers usually assume exponential distributions, which
facilitate finding analytical solutions to the models.
However, in some applications the distributions are
exponential, e.g., if a queuing theorist wishes to verify
his theory by a computer simulation. In such cases the
precomputed lower bound is zero, and the tandem de-
scribed earlier seems not to work.

However, a simple modification enables the tandem
to work, if we can compute positive dynamic propaga-
tion delays, instead of precomputed (zero) staiic propa-
gation delays. In stochastic network simulations, posi-
tive dynamic propagation delays are zero. For example,

122 Communications of the ACM]anuary 1989 Volume 32 Number 1

Research Contributions

we can take a restricted stochastic version of the gen-
eral token transport model in section 2, and assume the
service durations to be random and independent. Be-
cause of the independence, we can presimulate dura-
tions of all the services by server i that belong to the
future, not yet created history, without respect to what
the other servers will be doing during this future his-
tory. (A similar presimulation is used in [lg].) Specifi-
cally, the PE hosting server i can presimulate enough
service durations to cover the interval [max(floor, t,),
floor + B] (based on the worst case possibility that the
server is never idle). Then, for any neighbor j, the PE
sets d(i, j) to be the minimum of these durations. At
each major iteration, as floor increases, and the time
interval [max(poor, t;), floor + B] changes, the PE up-
dates the set of presimulated durations as well as their
minimum d(i, j). The dynamic d(i, j) can be substan-
tially larger than its static lower bound (T. Formula (3.1)
becomes inconvenient in this modification, because the
dynamic delay d(i, j) is readily available only for neigh-
boring i and j. However, the alternative algorithms in
Figure 7 work without change. A similar technique
works well in more complex stochastic simulation
models, e.g., in models with preemptive services and
with several classes of tokens.

In some problems, rather than just picking a random
activity duration, the simulator might be required to
mimic the simulated activity. A typical example is an
instruction-level simulation of program executions,
where the host executes each instruction of the simu-
lated program on behalf of the simulated system. If, in
such models, sufficiently large minimum propagation
delays d(i, j) are hard to determine, statically or dynam-
ically, then the proposed algorithm can be combined
with a roll-back algorithm, e.g., with Time Warp [ll].
In the combined algorithm, the minimum propagation
delays d(i, j) are substituted by surrogate values. The
surrogate d(i, j) accounts not only for the delays in
propagating events from i to j but also for the frequency
of sending events over link i + j. Since the lower
bound d(i, j) is not guaranteed, occasionally a delay in
propagating an event from i to j can be smaller than
d(i, j). Therefore, the roll-back might be needed. How-
ever, unlike the “raw” roll-back [ll], the combined
roll-back/bounded-lag algorithm, controls the fre-
quency of roll-backs and limits their harmful cascading
by adjusting d(i, j) and the lag bound B. This method of
simulation is presently under study.

Acknowledgments. I thank the personnel of the
Thinking Machine Corp. for their kind invitation and
help in debugging and running the parallel program on
one of their computers. Particularly, the help of Mr.
Gary Rancourt and Mr. Bernie Murray was invaluable.

APPENDIX:
On Average, at Least an Order of N Events are
Processed at a Major Iteration
An event e is said to be within the B-horizon, if T(e) 5 floor + B.
Given the minimum-propagationdelays construct and using the

fact that the algorithm in Figure 6 maintains the bounded lag
property with parameters B, one easily proves the following

Proposition 1. If pool II, contains at least one event within the
B-horizon, then there exists at least one node i E
S J (j, B) such that test T, c a(i) (at step 4 of the algorithm in
Figure 6) succeeds.

With Proposition 1, one then establishes

Proposition 2. The number of events processed at iteration k of
the algorithm in Figure 6 is at least

number of pools with events
within the B-horizon at iteration k

maxl~r~NISf(i,B)I
64.1)

If the density of events is too low or graph G is not sufficiently
sparse, then there is no hope that many events will
be processed at an iteration. Thus, two assumptions are
introduced:

Assumption 1. The numerator in (A.l) or, perhaps, its
amortized estimate (over the simulation run) is at least an
order of N.

Assumption 2. There exists a constant D, 0 < D < +m, inde-
pendent of N, such that max,,,,, 1 S t (i, B) 1 5 D.

Combining Assumptions 1 and 2 and Proposition 2, one
proves that at least an order of N events are processed, on the
average, at a major iteration of the algorithm in Figure 6.

REFERENCES
1. Binder. K. (ed.). Monte Carlo nrefhods is statistical physics, Springer-

Verlag, New York, N.Y.. 1986.
2. Bortz. A.B.. K&s. M.H.. and Lebowitz. J.L. A new algorithm for

Monte-Carlo simulation of Ising spin systems, /. Con~p. Physics. 17. 1
(Jan. 1975). 10-18.

3. Chandy, K.M.. and Misra, J. Distributed simulation: A case study in
design and verification of distributed programs. IEEE Trans. So@are
Eq., SE-5, 5 Sept. 1979. 440-452.

4. Chandy, K.M.. and Misra, J. Asynchronous distributed simulation
via a sequence of parallel computations. Comnwr. ACM 24, 3 (Apr.
1981), 198-206.

5. Friedberg, R.. and Cameron. I.E. Test of the Monte Carlo method:
Fast Simulation of a Small Ising Lattice, /. Chew. Pllysics 52. 12
(1970). 6049-60X.

6. Fujimoto. R.M. Performance measurements of distributed simula-
tion strategies. In Proceedings of the 1988 SCS Multiconfereme (San
Diego, Feb. 3-5. 1988). Simulation Series. SCS 19. 3. 14-20.

7. G&i. A., Berry, 0.. and Jefferson. D. Optimized virtual synchroni-
zation. In Proceedings of the 2d Intenrafional Workshop ON Applied
Mathematics and Perfornrallce/Reliabillfy Models [Rome, Italy, May
25-29. 1987). Univ. of Rome II (1987). 229-244.

8. Glauber. R.J. Time-dependent statistics of the lsing model. \. Math.
Physics 4. 2 (1963). 294-307.

9. Groselj, B.. and Tropper. C. Pseudosimulation: An algorithm for
distributed simulation with limited memory. Inf. /. Parallel Pro-
gramming 15. 5 (1987). 413-456.

10. Holmes, V. Parnllel algorithms on multiple processor architecfures.
Ph.D. dissertation, Comp. Science Dept.. Univ. Texas at Austin.
(1978).

11. Jefferson. D.R. Virtual time. ACM Trans. Prog. Lang. and Syst. 7, 3
(July 1985), 404-425.

12. Jones, D.W., Concurrent simulation: an alternative to distributed
simulation. In Proceedings of the 1986 Winter Simulatioll Conference
(Washington. D.C.. Dec. 8-10, 1986). 417-423.

13. Lubachevsky. B.D. Efficient parallel simulations of asynchronous
cellular arrays. Complex Systems I. 6 (Dec. 1987), 1099-1123.

14. Lubachevsky. B.D. Efficient parallel simulations of dynamic lsing
spin systems. J. Camp. Physics 75, 1 (Mar. 1988). 103-122.

15. Lubachevsky, B.D. Bounded lag distributed discrete event simula-
tion, Bell Laboratories Tech. Rep.. 1986. submitted for publication,
(shortened version). In Proceedings of the 1988 SCS Multiconference.
Simulation Series, SCS. 19, 3. 183-191.

(continued on p. 131)

January 1989 Volume 32 Number 1 Communications of the ACM 123

REFERENCES
1. Arcelli, C.. Cordella. L.P. and Levialdi. S. Parallel thinning of binary

pictures. Electronics Letters II, 7 (Apr. 1975). 146-149.
2. Golay, M.J.E. Hexagonal parallel pattern transformations. ZEEE Trans.

Cornput. C-18, 6 (Aug. 1969), 733-740.
3. GUO, Z. and Hall, R.W. Parallel thinning with two-subiteration algo-

rithms. Submitted for publication.
4. Halt. C.M., Stewart, A., Clint, M., and Perrott, R.H. An improved

parallel thinning algorithm. Comm. ACM 30, 2 (Feb. 1987), 156-160.

Research Contributions

5. Lii, H.E. and Wang, P.S.P. A comment on “A fast parallel algorithm
for thinning digital patterns.” Comm. ACM 29, 3 (Mar. 1966). 239-
242.

6. Preston, K. and Duff, M.J.B. Modem Cellular Automata. Plenum, New
York, 1964.

7. Rosenfeld, A. A characterization of parallel thinning algorithms. In-
formafion and Control 29. 3 (Nov. 1975), 266-291.

8. Rosanfeld. A. and Kak, A. Digital Picture Processing. vol. 2, Academic
Press, New York, 1962.

9. Rutovitz, D. Pattern recognition. I. Royal Sfatist. Sot. 129, Series A
(1966). 504-530.

10. Stefanelli. R. and Rosenfald, A. Some parallel thinning algorithms
for digital pictures. J. ACM 18, 2 (Apr. 1971), 255-264.

11. Wang. P.S.P. and Zhang. Y.Y. A fast serial and parallel thinning
algorithm. In Proceedings of the Eighth European Meeting on Cybemet-
its and Sysfems Research 86 (Vienna, Austria. April 1-4. 19861, R.
Trappl ed. 1966, pp. 909-915.

12. Zhang, T.Y., and Sue”, C.Y. A fast thinning algorithm for thinning
digital patterns. Comm. ACM 27, 3 (Mar. 19641, 236-239.

CR Categories and Subject Descriptors: 1.4 [Image Processing]: 1.5.2
[Pattern Recognition]: Design Methodology--pattern analysis; 1.5.4
[Pattern Recognition]: Applications-computer vision

General Terms: Algorithms, Performance, Theory
Additional Key Words and Phrases: Parallel algorithms, preservation

of connectivity, thinning binary patterns. two-subiteration algorithms.

ABOUT THE AUTHOR:

RICHARD W. HALL is en Associate Professor of Electrical

Engineering at the University of Pittsburgh. His current re-

search interests include computer vision and parallel algo-
rithms and architectures for visual information processing.
Author’s Present Address: Department of Electrical Engineer-
ing, University of Pittsburgh, Pittsburgh, PA 15261.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Lubachevsky (continued from p. 123)

16. Metropolis, N., et al. Equation of state calculations by fast computing
machines, J Chem. Physics, 21. 6 (June 1953). 1087-1092.

17. Misra, J. Distributed discrete-event simulation. Comput. Sum 18. 1
(1966). 39-65.

16. Nicol, D.M. Synchronizing network performance. M.S. dissertation.
School of Eng. and Appl. Science, Univ. of Virginia, (1984).

19. Nicol, D.M. Parallel discrete-event simulation of FCFS stochastic
queuing networks. In Proceedings of the ACM SIGPLAN Symposium on
Parallel Programming Experience in Applications, Languages, and
Systems, (New Haven. Con”.. July 1966).

20. Nicol, D.M., and Reynolds, P.F. Problem oriented protocol design. In
Proceedings of the 1984 Winter Simulation Conference (Dallas, Tex.,

21.

22.

23.

24.

Dec. 1964). 471-474.
Nicol, D.M.. and Reynolds, P.F. An optimal repartitioning decision
policy. In Proceedings of the 1985 Winter Simulation Conference (San
Francisco, Calif., Dec. 1985). 493-497.
Peacock, J.K.. Wang. J.W., and Manning, E.G. Distributed simulation
using a network of processors, In Proceedings of the 3d Berkeley
Workshop on Distributed Data Managements and Camp. Networks
(1978) and Compufer Networks 3, 1 (1979).
Reed, D.A., Malony, A.D., and McCredie. B.D. Parallel discrete event
simulation using shared memory, IEEE Trans. Soffware Eng.. 14, 4
(1966). 541-553.
Sokol, L.M.. Briscoe, D.P., and Wieland, A.P. MTW: a strategy for
scheduling discrete simulation events for concurrent execution.
In Proceedings of the 1988 SCS Multiconference (San Diego, Calif.,
Feb. 3-6. 1969). Simulation Series, SCS, 19. 3, 34-42.

CR Categories and Subject Descriptors: C.3 [Special Purpose and
Application-Based Systems]; 1.6.1 [Simulation and Modeling]: Simula-
tion Theory

General Terms: Design, Experimentation
Additional Key Words and Phrases: Discrete-Event simulation,

event-driven simulation, parallel processing. Ising model

ABOUT THE AUTHOR:

BORIS D. LUBACHEVSKY received his diploma in mathemat-
ics (equivalent MS.) from Leningrad University in 1971 and
the candidate degree (equivalent Ph.D.) in Computer Science in
1977 from Tomsk Polytechnical Institute (USSR). He is a mem-
ber of the Technical Staff in AT&T Bell Laboratories, and au-
thor of a number of papers on efficient parallel programming
techniques and on distributed simulations [13-151. His re-
search interests include parallel programming and simulation
techniques. Author’s present address: Boris D. Lubachevsky,
AT&T Bell Laboratories, 600 Mountain Ave., Rm. ZC-121,
Murray Hill, NJ 07974.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

January 1989 Volume 32 Number I Communications of the ACM 131

